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A method for improving the performance of sparse-matrix based parity check codes is proposed, based on
insight gained from methods of statistical physics. The advantages of this approach are demonstrated on an
existing encoding/decoding paradigm suggested by Sourlas. We also discuss the application of the same
method to more advanced codes of a similar type.

PACS numbegps): 89.90+n, 02.50-r, 05.50+q, 75.10.Hk

Error-correcting codes are commonly used in most meansrating single code-word bits is carried out according to a
of information transmission. The coding efficiency, mea-predetermined random setup and may be represented by a
sured in the percentage of informative transmitted bits, playproduct of a randomly generated sparse matrix and the mes-
a crucial role in determining the speed of communicationsage vector in a manner explained below. It was shown that
channels and the effective storage space on hard disks. by using Gallager's method it is possible to get closer to
The question of channel capacity of noisy communicationShannon’s bound of the maximal channel capacity for spe-
channels was addressed by Shanpbhin his pioneering cific choices of the encoding/decoding matri¢és-7].
work from 1948. Rigorous bounds have been derived for the In this paper we will introduce a method for constructing
maximal transmission rate for which codes, capable othe encoding/decoding matrix employed in general Gallager-
achieving arbitrarily small error probability, can be found. type codes that enables one to improve the code’s perfor-
In a typical scenario, a message comprisiginary bits  mance significantly. In this method the matrix comprises
is transmitted through a noisy communication channel; thespecifically constructed sparse matrices, designed to gradu-
received string differs from the transmitted one due to noiseally build up the overlap between the original and the de-
(for instance, background radiation, thermal noise,)déle = coded message. We will demonstrate to potential of the
result of which is the flipping of some bits. Here, we denotemethod by examining the model suggested by SoUlas
the flipping rate of a bit in a binary symmetric chanfiet.,  representing a special case of Gallager's code. The perfor-
from 0 to 1 or from 1 to Qby f €[ 0:1]; other types of noise mance of this simple model is generally inferior to that of
may also be considered, which may be more realistic in somether advanced Gallager codes. However, we prefer to
scenarios. Error-correcting codes have been devised for r@resent the main ideas behind our method via the code of
trieving the original message at the receiving end. Sourlas[8] due to its straightforward relation to Ising spin
The receiver can correct the flipped hits some fraction models and the transparent interpretation of the construction.
of them) in a retrieved message of lendthonly if the source  More general constructions have been employed recently for
transmitsM (f)>N bits; the ratio between the original num- improving the performance of more complicated Gallager
ber of bits and those of the transmitted messRgeN/M is  type codeg7] bringing their performance close to saturating
termed the code rate. Shanngh] obtained the optimal Shannon’s bound.
trade-off between the following three quantities in the ther- In a general scenario, a messagis encoded to a code
modynamic limit: the maximal code rak. (termed channel word t, which is then transmitted through a noisy channel.
capacity, the flip ratef (due to noisg and the coded bit error The code word is corrupted during transmission by noise,

probability p,, given explicitly by represented by the vectar and the received code words
decoded by the receiver for retrieving the original message.
R.=[1—Hy(F)]/[1—Hy(pp) ], (1) Sourlas’s approach is based on mapping the coding prob-
lem onto that of an Ising spin system. The original presenta-
whereH,(x) = —x log,(X) —(1—X) log,(1—X). tion [8] made use of a binary#1) message vector repre-

Shannon’s theory indicates the existence of optimal codesentation; here, for brevity and consistency with the notation
but does not provide a way of obtaining them. Many algo-commonly used for Gallager's method, we will mostly use
rithms were devised to overcome this practical probléon  the Boolean(0,1) formulation of the problem unless stated
a review sed?2]), however, the performance of most practi- otherwise. In this approach one constructs code-word bits by
cal algorithms is below Shannon’s bound. taking the sum of randomly select&dBoolean message bits

One error-correcting code which recently became populatmod 2
is the Gallager codg€3—6]. In this method, the transmitted
message comprises the original message itself and additional t=A s (mod 2,
bits used for error correction. Each one of the additional bits
is generated by summing up randomly selected message bitshere the matrixA containsK(<N) unit elements per row
the parity of the sum constitutes the transmitted code-worénd C(=KM/N) per column, setting all other elements to
bit. The choice of the message-vector elements used for geazero.
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Using a simple linear transformatioéi:(l_zsi)a the matically, for instance, foK=6 the initial magnetization

Boolean bitss; < (0,1) can be mapped onto binary ories required for successful convergence is higher than 0.98
e(1,—1). The physical system then consists Mflsing —0.99.

spins withK spin interactions and a fixed connectivilyi.e., Ol.” method buﬂds on |nS|ght gained from the study of
each spin participates i@ interactions. The corresponding phy_su:_al systems with symmetric an_d asymmeﬁfﬂ@] mul- .
Hamiltonian has the following form: tispin |nteract|or_15_and previous stu_d|es of Sourlas’s code via
methods of statistical physi¢41]. It is based on the gradual
introduction of higher connectivity sparse matrices, exploit-
H=-— E J.i. i.5S.---S , (2 ing the excellent convergence properties of codes based on
iz i) HETO 2 “ low K values with the high performance of high-codes.

. . . . For example, one may carry out the first stage of the decod-
where'{a} are the blngry dynamical variables used in theing process usingt =2 and then, once the overlap between
decoding process, which can take the valu%sll. The  ihe decoded word and the original message is within the
noisy free channel interaction tensor; ; i relevant basin of attraction, one invokes tke=3 connec-
=5,S;,...5, Wheres is the binary representation of tions (that were already used in generating the code yord
the originally Boolean message vectsy the choice of result!ng in a much higher o_verlap in comparison o the case
indicesiy iy, . ...k is predetermined between the sender" which only K=2 connections are used. The process can

and the receiver, reflecting the nonzero row elements of thg!garly be generallzed to include a longer sequence of tran-
matrix A. Due to corruption during transmissidi sitions and to differenK values, such as to improve the

. . .. SEAN overall performance. One should point out that from a physi-
=SS, - -si, With probability 1—f and —s; s; - - -s; With  cal point of view this is equivalent to changing the Hamil-
probability f. Under a gauge transformation this model istonian(2) as a function of time.
mapped onto a highly diluted Ising spin system with ferro- It has been shown that the method does not have to be
magnetic bias(we assumef<0). The magnetizatiorm  implemented in a dynamical manner as the one described
=1/N =N ,Ss is related to the fraction of correct bits (1 above as long as the encoding/decoding structured matrix is
+m)/2. constructed appropriately. The dynamical implementation is
Finding the ground state of the Hamiltonian, in terms ofslightly sup_erior close to the critical flip rate. I_t also enaples
the variablesS, corresponds to the Bayes optimal estimation©n€ o obtain, at zero temperature, results which are typically
of the original message bits and thus to decoding the re2Ptained only at finite temperatures. _ _
ceived messagi9]; it can be carried out using various tech- _ An optimal construction of the encodlng/decodlng matrix
niques, including energy minimizaticisimple Monte Carlo IS clearly the key point to a successful algorithm. Although
at some temperature, say zear belief propagatior(e.g., there is no clgar recipe for constructing the matrix in general,
Refs.[4,10]). The properties of Sourlas’s method have beerP€ can provide a few guidelines that are helpful for improv-

investigated for the fully connectg6] and diluted casgd1] ~ Ing the performance. , , , .
of fixed connectivity. Originally, the method relies on invoking the highigr

The main drawback of the method is the need to Comprogonnections once the current state of the system is \_/vithin the
mise between supericequilibrium) capabilities and poor bfasm of attraction of the combined system,_ including bot.h
decoding performancédynamio, and suboptimal capabili- high and lowK values. Th_e latter can be esumated numeri-
ties (in terms of the achievable code ratend successful cally either by_an gxhaustl\{e sgarch or approxmated analyti-
decoding. For example, the choice K 2 in Sourlas’s ap- cally_, by conS|der|n'g contrlbutlor}s' .to a sm_gle node 'and.av—
proach, i.e., having only two multispin interactiofdSl’s), eraging over the input pro_babllmes. Thls_ ap_prOX|mat|on
corresponds to an energy landscape dominated by a veRFSUMES @ gauged magnetizatiorper contributing node,
large basin of attraction; this will lead to a successful conwhere(S;(t)s;)=m for all i, neglecting correlations among
vergence from almosany small positive initial overlap be- the different sitegsping. The average- - -) represents an
tween the dynamical variables and the message, and wilverage over possible spin distributions and interaction
result in a high end overlam (and consequently successful weights, where the prior on the weights is takenR{(g)
decoding. However, this overlap is much smaller than 1, the=f 6(J+1)+(1—f) 6(J—1) and P(m)=(1+m)/2 &(m
perfectdecoding required in most cases, even for flip rates— 1)+ (1—m)/2 §(m+1). The basin of attraction at zero
way below Shannon’s limit. On the other hand, choosingtemperature is then defined as the minimal magnetization
higherK (and consequentially high€l) values may resultin  such thagsgnh;))=mVi, where
very high end magnetization and successful decoding, but
also in a corresponding dramatic decease in the basin of at- ho= E 3 S-S 3)
traction. The improved end magnetization can be easily un- b, Ty ke T K
derstood as the increased connectivity reduces the probabil-
ity of a negative local field asymptotically; the reduced basinis the induced field per node. The end magnetization ob-
of attraction clearly results from the vanishing contributiontained is defined as tha value for which the equality holds.
of the product ofK spins far from the ground state. Conse- To demonstrate the agreement between results obtained nu-
guently, one may expect a decoding failure unless the startnerically and analytically and how they reflect the essence
ing point is chosen very close to the original message; suchf the cascaded decoding approach, we examine analytically
information is clearly unavailable in practical scenarios. Onehe case oR=1/3 andf =0.14.(a) Having only 2 MSI’'s and
should emphasize that the basin of attraction shrinks drac=6 (=K/R) interactions, one obtains a value of
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1.0 T configuration to a higher end magnetization than required for

+—+ End magnetization the complete system to converge. As systems with higher
A—a Basin of attraction

connectivity will result in higher end magnetization, one
should choose the highestvalue for which the partial sys-
tem’s end magnetization is higher than the basin of attraction
of the complete system, i.e., the intersection of the two
graphs.

In constructing the matrix one may have to use a non-
integer effective number of connections per s@ifii.e., the
number of nonzero elements in a column of the ma#)x
due to its relations to other system parameters; denoting the
number of message bits wit, MSI asN, than 1N =Ny
=1/R and C=Z= KN, /N whereN is the number of mes-
sage elements. We have found it useful to keep the distribu-
tion of nonzero elements per column as homogeneous as
possible to provide equal corrective contribution to all bits.
In addition, it would be helpful to avoid having small loops

_FIG. 1. The end magnetization of a partial systefiamond$ 5 the connectivity matrix, i.e., small groups of sites con-
with only low MSI connections €=4 andK=2 andM=3N) (a4 cyclically, as these contribute to recurrent dynamics

against the minimal magnetization required for convergahesin i s Inoresses corrective input from the rest of the sys-
of attractior) in the complete systeittriangles. The two curves are tem

plotted as a function of the fraction<Op<1 of K=4 connection . . L
[and (1- p) connections oK =2]. For converging to the correct final state it is useful to

initialize the system with some positive overlap between the

=0.932 for the end magnetization in comparison to ~ dynamical variables and the original message as in most of
~0.94 obtained empirically; no significant limitation on the these systems, both solutions, with=+1, are equally at-
basin of attraction has been observed, i.e., convergence figactive. This may be achieved by adding some odd-MSlI’s
expected from any initial overlagb) For (C=) 4 interac- (i.e., an odK value, e.g.K=3) to the mainly everK value
tions with (K=) 2 MSI's and C=4 interactions with 4 used initially (e.g.,K=2); this assists in breaking the sym-
MSI's (this provides in total the same message length asnetry from any initial dynamical variables setting with prac-
before 1R=3=4/2+4/4) one obtains an end magnetization tically no effect on the basin of attraction. Odd connectivity
of m=0.97; the value obtained empirically i8~0.98. The  per spin also alleviates the problem of zero local field; it is
basin of attraction requires an initial overlap=0.6—0.62.  characterized by finite zero temperature entropy and hence
(c) For only 4 interactions with 2 MSI'$i.e., as in(b) but  improves convergence and the performance in general.
omitting all 4 MSI componenisone obtains a final magne- As decoding is carried out iteratively, it is important to
tization of m=0.64 with no restrictions on the basin of at- define a halting criterion for obtaining the decoded message.
traction. Here we carry out a simple energy minimization, and the

This forms the basis for the cascading error-correctingalgorithm comes to a halt when all spins are aligned to their
method: Starting from angpositive initial overlap between local fields(except spins of zero local fieldsThe local field
the message and the dynamical variables, and employing ttaf each spinh; is calculated in turn by summing over all
configuration of(c), one obtains an end magnetization which other spin statepsee Eq.(3)]; the binary value of the indi-
is well within the basin of attraction of the complete Hamil- vidual spin is then obtained by aligning it with the value
tonian systenib). Following with the dynamics of the com- calculated forh;, i.e., §=+1 if h;>0 andS=—1 other-
plete system results in an end magnetizationme#0.98,  wise. This dynamical process is repeated until the system
well above the end magnetization (), although the two stabilizes or until some halting criterion is obeyed.
systems have the same code rate and indifference to the To show the excellent performance of the new method we
choice of initial conditions compared the end overlap of four different systems of rate

The optimal combination of MSI's, for which the highest R=1/7[i.e., code-word length o1 =7N, corresponding to
end magnetization is obtained, depends on many parametedscritical flip ratef.=0.282 due to Shannon, see Ha)],
including the code rat®, the noise level, and the message starting from similar initial conditions and the same trans-
bias. Finding the optimal connectivities ratio of two different mission flip ratef = 0.25. Experiments have been carried out
MSI values can be carried out by plotting the end magnetifor different system sizedN=5000-20 000, for getting a
zation of a partial system with only low MSI connectid@s  feel for the dependence of the performance on the system’s
in (c), with C=4 andK=2] against the minimal magneti- size. The dynamic employed for the energy minimization is
zation required for convergendbasin of attractionin the  based on sequentially updating the spins although similar
complete systerfias in(b)]. Figure 1 shows the two curves results were obtained for parallel dynamic. The results sum-
as a function of the fraction€®p=<1 of K=4 interactions marized in Table | show a significant improvement in the
[and with (1-p) K=2 interaction$ The experiment has final overlap due to the cascaded encoding/decoding scheme.
been carried out for the case &=1/3, f=0.14, andN  The low MSI part of the code word serves to bring the de-
=10* and the results were averaged over 10 trials. From Figcoded vector to a sufficiently high overlap with the original
1 it is clear that any choice gi=0.42 will lead the partial message, so that it lies within the basin of attraction of the

0.8 |

0.6 -

MAGNETIZATION

0.0 & A
0.0 0.2




2140 BRIEF REPORTS PRE 61

TABLE I. Final overlap for various combinations of MSI's in idly with the increase in MS(e.g., a magnetization of 0.6 in
the case oR=1/7 and transmission flip rate df=0.25, starting the case oK =2 will reduce to 0.8=0.216 in the case of
from similar initial conditions for the different configurations. K=4). Furthermore, nearly disconnected clusters are natu-
rally formed, with finite probability, in randomly connected

Message bitsNi) MSI (K Final magnetization diluted spin systemgl2], giving rise to exponentially many

7N 2 0.940 highly degenerated local minima and energy levelg., one
local field obtained in a system with MSI's has a degen-

5N 2 0.975 eracy of X71); these make the probability of successful

2N 5 convergence vanishingly small. This interplay is at the center
of our approach and guides the choice of the optimal model

5N 2 0.987 parameters.

2N 7 To conclude, we have shown that through a successive
change in MSI and connectivity one can boost the perfor-

5N 2 0.993 mance of matrix based error-correcting codes. We showed

ON 9 that this is feasible for the special case of Gallager-type

codes presented by Sourl@, although the method itself is
applicable to all codes of this type and may be easily adapted
combined message; the final convergence to a very higto fit most of the existing variations as will be shown else-
overlap is facilitated by the high MSI. where[7]. There are a few extensions that we would like to
These results, can be improved upon by having a reliabl@oint out.
prior knowledge of the noise level. No such knowledge was (1) Although our examples concentrated on unbiased
assumed in any of the above mentioned experiments. Onaessages, the process can clearly be easily generalized to
should also point out that in all the experiments, we observethiiased messages. It may also be generalized to include non-
convergence after a few tens of iterations at most and theymmetric connections and continuous or multilevel mes-
complexity of the algorithm used is @(N). The physical sage unitginstead of binary
interpretation to the success of this method benefits from (2) It is plausible that many sets of parameters have simi-
viewing the system as a graph whereby the different nodekar performance in the thermodynamic limit; however, their
(message sit¢sare sparsely connected by unit weiglgge-  finite size behavior above and below saturation is of great
ments of the multidimensional tensdy. By increasing the interest from a practical point of view. Finding architectures
number of MSI, say fronK=2 to K=4, one increases the that are superior in their finite size behavior, as well as find-
graph connectivity and the number of inputs which contrib-ing methods by which to suppress the finite size effects,
ute to determining the state of each specific spin. On thevould clearly be of great practical significance.
other hand, as the number of MSI increases, their “quality” The cascading decoding method and the extensions men-
deteriorates; the average local field is determined by takingjoned above open a wide range of possibilities for a highly
the product oK — 1 terms representing the magnetization of efficient encoding/decoding mechanism of significant practi-
all spins connected to the relevant weight, which decays rapzal value.
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