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Cascading parity-check error-correcting codes
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A method for improving the performance of sparse-matrix based parity check codes is proposed, based on
insight gained from methods of statistical physics. The advantages of this approach are demonstrated on an
existing encoding/decoding paradigm suggested by Sourlas. We also discuss the application of the same
method to more advanced codes of a similar type.

PACS number~s!: 89.90.1n, 02.50.2r, 05.50.1q, 75.10.Hk
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Error-correcting codes are commonly used in most me
of information transmission. The coding efficiency, me
sured in the percentage of informative transmitted bits, pl
a crucial role in determining the speed of communicat
channels and the effective storage space on hard disks.

The question of channel capacity of noisy communicat
channels was addressed by Shannon@1# in his pioneering
work from 1948. Rigorous bounds have been derived for
maximal transmission rate for which codes, capable
achieving arbitrarily small error probability, can be found

In a typical scenario, a message comprisingN binary bits
is transmitted through a noisy communication channel;
received string differs from the transmitted one due to no
~for instance, background radiation, thermal noise, etc.! the
result of which is the flipping of some bits. Here, we deno
the flipping rate of a bit in a binary symmetric channel~i.e.,
from 0 to 1 or from 1 to 0! by f P@0:1#; other types of noise
may also be considered, which may be more realistic in so
scenarios. Error-correcting codes have been devised fo
trieving the original message at the receiving end.

The receiver can correct the flipped bits~or some fraction
of them! in a retrieved message of lengthN only if the source
transmitsM ( f ).N bits; the ratio between the original num
ber of bits and those of the transmitted messageR[N/M is
termed the code rate. Shannon@1# obtained the optima
trade-off between the following three quantities in the th
modynamic limit: the maximal code rateRc ~termed channe
capacity!, the flip ratef ~due to noise!, and the coded bit erro
probability pb , given explicitly by

Rc5@12H2~ f !#/@12H2~pb!#, ~1!

whereH2(x)52x log2(x)2(12x) log2(12x).
Shannon’s theory indicates the existence of optimal co

but does not provide a way of obtaining them. Many alg
rithms were devised to overcome this practical problem~for
a review see@2#!, however, the performance of most prac
cal algorithms is below Shannon’s bound.

One error-correcting code which recently became pop
is the Gallager code@3–6#. In this method, the transmitte
message comprises the original message itself and addit
bits used for error correction. Each one of the additional b
is generated by summing up randomly selected message
the parity of the sum constitutes the transmitted code-w
bit. The choice of the message-vector elements used for
PRE 611063-651X/2000/61~2!/2137~4!/$15.00
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erating single code-word bits is carried out according to
predetermined random setup and may be represented
product of a randomly generated sparse matrix and the m
sage vector in a manner explained below. It was shown
by using Gallager’s method it is possible to get closer
Shannon’s bound of the maximal channel capacity for s
cific choices of the encoding/decoding matrices@4–7#.

In this paper we will introduce a method for constructin
the encoding/decoding matrix employed in general Gallag
type codes that enables one to improve the code’s per
mance significantly. In this method the matrix compris
specifically constructed sparse matrices, designed to gr
ally build up the overlap between the original and the d
coded message. We will demonstrate to potential of
method by examining the model suggested by Sourlas@8#,
representing a special case of Gallager’s code. The pe
mance of this simple model is generally inferior to that
other advanced Gallager codes. However, we prefer
present the main ideas behind our method via the code
Sourlas@8# due to its straightforward relation to Ising sp
models and the transparent interpretation of the construct
More general constructions have been employed recently
improving the performance of more complicated Gallag
type codes@7# bringing their performance close to saturatin
Shannon’s bound.

In a general scenario, a messages is encoded to a code
word t, which is then transmitted through a noisy chann
The code word is corrupted during transmission by noi
represented by the vectorn, and the received code wordr is
decoded by the receiver for retrieving the original messa

Sourlas’s approach is based on mapping the coding p
lem onto that of an Ising spin system. The original presen
tion @8# made use of a binary (61) message vector repre
sentation; here, for brevity and consistency with the notat
commonly used for Gallager’s method, we will mostly u
the Boolean~0,1! formulation of the problem unless state
otherwise. In this approach one constructs code-word bits
taking the sum of randomly selectedK Boolean message bit
~mod 2!

t5A s ~mod 2!,

where the matrixA containsK(!N) unit elements per row
and C(5KM /N) per column, setting all other elements
zero.
2137 ©2000 The American Physical Society
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Using a simple linear transformation,ŝi5(122si), the
Boolean bitssiP(0,1) can be mapped onto binary onesŝi
P(1,21). The physical system then consists ofN Ising
spins withK spin interactions and a fixed connectivityC, i.e.,
each spin participates inC interactions. The correspondin
Hamiltonian has the following form:

H52 (
^ i 1 ,i 2 . . . i K&

Ji 1 ,i 2 , . . . ,i K
Si 1

Si 2
•••Si K

, ~2!

where $Si% are the binary dynamical variables used in t
decoding process, which can take the values (61). The
noisy free channel interaction tensorJi 1 ,i 2 , . . . ,i K

0

5 ŝi 1
ŝi 2

. . . ŝi K
where ŝ is the binary representation o

the originally Boolean message vectors; the choice of
indices i 1 ,i 2 , . . . ,i K is predetermined between the send
and the receiver, reflecting the nonzero row elements of
matrix A. Due to corruption during transmissionJi 1 ,i 2 ,•••,i K

5 ŝi 1
ŝi 2

••• ŝi K
with probability 12 f and2 ŝi 1

ŝi 2
••• ŝi K

with
probability f. Under a gauge transformation this model
mapped onto a highly diluted Ising spin system with fer
magnetic bias~we assumef <0). The magnetizationm
51/N ( i 51

N Si ŝi is related to the fraction of correct bits (
1m)/2.

Finding the ground state of the Hamiltonian, in terms
the variablesS, corresponds to the Bayes optimal estimati
of the original message bits and thus to decoding the
ceived message@9#; it can be carried out using various tec
niques, including energy minimization~simple Monte Carlo
at some temperature, say zero! or belief propagation~e.g.,
Refs.@4,10#!. The properties of Sourlas’s method have be
investigated for the fully connected@8# and diluted cases@11#
of fixed connectivity.

The main drawback of the method is the need to comp
mise between superior~equilibrium! capabilities and poor
decoding performance~dynamic!, and suboptimal capabili
ties ~in terms of the achievable code rate! and successfu
decoding. For example, the choice ofK52 in Sourlas’s ap-
proach, i.e., having only two multispin interactions~MSI’s!,
corresponds to an energy landscape dominated by a
large basin of attraction; this will lead to a successful co
vergence from almostany small positive initial overlap be-
tween the dynamical variables and the message, and
result in a high end overlapm ~and consequently successf
decoding!. However, this overlap is much smaller than 1, t
perfectdecoding required in most cases, even for flip ra
way below Shannon’s limit. On the other hand, choos
higherK ~and consequentially higherC) values may result in
very high end magnetization and successful decoding,
also in a corresponding dramatic decease in the basin o
traction. The improved end magnetization can be easily
derstood as the increased connectivity reduces the prob
ity of a negative local field asymptotically; the reduced ba
of attraction clearly results from the vanishing contributi
of the product ofK spins far from the ground state. Cons
quently, one may expect a decoding failure unless the s
ing point is chosen very close to the original message; s
information is clearly unavailable in practical scenarios. O
should emphasize that the basin of attraction shrinks
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matically, for instance, forK56 the initial magnetization
required for successful convergence is higher than 0
20.99.

Our method builds on insight gained from the study
physical systems with symmetric and asymmetric@12# mul-
tispin interactions and previous studies of Sourlas’s code
methods of statistical physics@11#. It is based on the gradua
introduction of higher connectivity sparse matrices, explo
ing the excellent convergence properties of codes base
low K values with the high performance of high-K codes.
For example, one may carry out the first stage of the dec
ing process usingK52 and then, once the overlap betwe
the decoded word and the original message is within
relevant basin of attraction, one invokes theK53 connec-
tions ~that were already used in generating the code wo!,
resulting in a much higher overlap in comparison to the c
in which only K52 connections are used. The process c
clearly be generalized to include a longer sequence of t
sitions and to differentK values, such as to improve th
overall performance. One should point out that from a phy
cal point of view this is equivalent to changing the Ham
tonian ~2! as a function of time.

It has been shown that the method does not have to
implemented in a dynamical manner as the one descr
above as long as the encoding/decoding structured matr
constructed appropriately. The dynamical implementation
slightly superior close to the critical flip rate. It also enabl
one to obtain, at zero temperature, results which are typic
obtained only at finite temperatures.

An optimal construction of the encoding/decoding mat
is clearly the key point to a successful algorithm. Althou
there is no clear recipe for constructing the matrix in gene
one can provide a few guidelines that are helpful for impro
ing the performance.

Originally, the method relies on invoking the higherK
connections once the current state of the system is within
basin of attraction of the combined system, including bo
high and lowK values. The latter can be estimated nume
cally either by an exhaustive search or approximated ana
cally, by considering contributions to a single node and
eraging over the input probabilities. This approximati
assumes a gauged magnetizationm per contributing node,
where^Si(t) ŝi&5m for all i, neglecting correlations amon
the different sites~spins!. The averagê•••& represents an
average over possible spin distributions and interact
weights, where the prior on the weights is taken asP(J)
5 f d(J11)1(12 f ) d(J21) and P(m)5(11m)/2 d(m
21)1(12m)/2 d(m11). The basin of attraction at zer
temperature is then defined as the minimal magnetiza
such that̂ sgn(hi)&>m; i , where

hi5 (
^ i 2 . . . i K&

Ji ,i 2 , . . . ,i K
Si 2

•••Si K
~3!

is the induced field per node. The end magnetization
tained is defined as them value for which the equality holds
To demonstrate the agreement between results obtained
merically and analytically and how they reflect the esse
of the cascaded decoding approach, we examine analytic
the case ofR51/3 andf 50.14.~a! Having only 2 MSI’s and
C56 (5K/R) interactions, one obtains a value ofm
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50.932 for the end magnetization in comparison tom
'0.94 obtained empirically; no significant limitation on th
basin of attraction has been observed, i.e., convergenc
expected from any initial overlap.~b! For (C5) 4 interac-
tions with (K5) 2 MSI’s and C54 interactions with 4
MSI’s ~this provides in total the same message length
before 1/R5354/214/4) one obtains an end magnetizati
of m50.97; the value obtained empirically ism'0.98. The
basin of attraction requires an initial overlapm>0.620.62.
~c! For only 4 interactions with 2 MSI’s@i.e., as in~b! but
omitting all 4 MSI components# one obtains a final magne
tization of m50.64 with no restrictions on the basin of a
traction.

This forms the basis for the cascading error-correct
method: Starting from any~positive! initial overlap between
the message and the dynamical variables, and employing
configuration of~c!, one obtains an end magnetization whi
is well within the basin of attraction of the complete Ham
tonian system~b!. Following with the dynamics of the com
plete system results in an end magnetization ofm'0.98,
well above the end magnetization of~a!, although the two
systems have the same code rate and indifference to
choice of initial conditions

The optimal combination of MSI’s, for which the highe
end magnetization is obtained, depends on many param
including the code rateR, the noise level, and the messa
bias. Finding the optimal connectivities ratio of two differe
MSI values can be carried out by plotting the end magn
zation of a partial system with only low MSI connections@as
in ~c!, with C54 andK52] against the minimal magneti
zation required for convergence~basin of attraction! in the
complete system@as in ~b!#. Figure 1 shows the two curve
as a function of the fraction 0<r<1 of K54 interactions
@and with (12r) K52 interactions#. The experiment has
been carried out for the case ofR51/3, f 50.14, andN
5104 and the results were averaged over 10 trials. From
1 it is clear that any choice ofr<0.42 will lead the partial

FIG. 1. The end magnetization of a partial system~diamonds!
with only low MSI connections (C54 and K52 and M53N)
against the minimal magnetization required for convergence~basin
of attraction! in the complete system~triangles!. The two curves are
plotted as a function of the fraction 0<r<1 of K54 connection
@and (12r) connections ofK52].
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configuration to a higher end magnetization than required
the complete system to converge. As systems with hig
connectivity will result in higher end magnetization, on
should choose the highestr value for which the partial sys
tem’s end magnetization is higher than the basin of attrac
of the complete system, i.e., the intersection of the t
graphs.

In constructing the matrix one may have to use a n
integer effective number of connections per spinC ~i.e., the
number of nonzero elements in a column of the matrixA)
due to its relations to other system parameters; denoting
number of message bits withKk MSI asNk than 1/N (kNk

51/R and C5(kKkNk /N whereN is the number of mes-
sage elements. We have found it useful to keep the distr
tion of nonzero elements per column as homogeneous
possible to provide equal corrective contribution to all bi
In addition, it would be helpful to avoid having small loop
in the connectivity matrix, i.e., small groups of sites co
nected cyclically, as these contribute to recurrent dynam
which suppresses corrective input from the rest of the s
tem.

For converging to the correct final state it is useful
initialize the system with some positive overlap between
dynamical variables and the original message as in mos
these systems, both solutions, withm561, are equally at-
tractive. This may be achieved by adding some odd-MS
~i.e., an oddK value, e.g.,K53) to the mainly evenK value
used initially ~e.g.,K52); this assists in breaking the sym
metry from any initial dynamical variables setting with pra
tically no effect on the basin of attraction. Odd connectiv
per spin also alleviates the problem of zero local field; it
characterized by finite zero temperature entropy and he
improves convergence and the performance in general.

As decoding is carried out iteratively, it is important
define a halting criterion for obtaining the decoded messa
Here we carry out a simple energy minimization, and t
algorithm comes to a halt when all spins are aligned to th
local fields~except spins of zero local fields!. The local field
of each spinhi is calculated in turn by summing over a
other spin states@see Eq.~3!#; the binary value of the indi-
vidual spin is then obtained by aligning it with the valu
calculated forhi , i.e., Si511 if hi.0 andSi521 other-
wise. This dynamical process is repeated until the sys
stabilizes or until some halting criterion is obeyed.

To show the excellent performance of the new method
compared the end overlap of four different systems of r
R51/7 @i.e., code-word length ofM57N, corresponding to
a critical flip rate f c50.282 due to Shannon, see Eq.~1!#,
starting from similar initial conditions and the same tran
mission flip ratef 50.25. Experiments have been carried o
for different system sizes,N55000220 000, for getting a
feel for the dependence of the performance on the syste
size. The dynamic employed for the energy minimization
based on sequentially updating the spins although sim
results were obtained for parallel dynamic. The results su
marized in Table I show a significant improvement in t
final overlap due to the cascaded encoding/decoding sche
The low MSI part of the code word serves to bring the d
coded vector to a sufficiently high overlap with the origin
message, so that it lies within the basin of attraction of
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combined message; the final convergence to a very h
overlap is facilitated by the high MSI.

These results, can be improved upon by having a relia
prior knowledge of the noise level. No such knowledge w
assumed in any of the above mentioned experiments.
should also point out that in all the experiments, we obser
convergence after a few tens of iterations at most and
complexity of the algorithm used is ofO(N). The physical
interpretation to the success of this method benefits fr
viewing the system as a graph whereby the different no
~message sites! are sparsely connected by unit weights~ele-
ments of the multidimensional tensorJ). By increasing the
number of MSI, say fromK52 to K54, one increases th
graph connectivity and the number of inputs which contr
ute to determining the state of each specific spin. On
other hand, as the number of MSI increases, their ‘‘qualit
deteriorates; the average local field is determined by tak
the product ofK21 terms representing the magnetization
all spins connected to the relevant weight, which decays

TABLE I. Final overlap for various combinations of MSI’s in
the case ofR51/7 and transmission flip rate off 50.25, starting
from similar initial conditions for the different configurations.

Message bits (Nk) MSI (Kk) Final magnetization

7N 2 0.940

5N 2 0.975
2N 5

5N 2 0.987
2N 7

5N 2 0.993
2N 9
n
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idly with the increase in MSI~e.g., a magnetization of 0.6 in
the case ofK52 will reduce to 0.6350.216 in the case of
K54). Furthermore, nearly disconnected clusters are n
rally formed, with finite probability, in randomly connecte
diluted spin systems@12#, giving rise to exponentially many
highly degenerated local minima and energy levels~e.g., one
local field obtained in a system withK MSI’s has a degen-
eracy of 2K21); these make the probability of successf
convergence vanishingly small. This interplay is at the cen
of our approach and guides the choice of the optimal mo
parameters.

To conclude, we have shown that through a succes
change in MSI and connectivity one can boost the perf
mance of matrix based error-correcting codes. We show
that this is feasible for the special case of Gallager-ty
codes presented by Sourlas@8#, although the method itself is
applicable to all codes of this type and may be easily adap
to fit most of the existing variations as will be shown els
where@7#. There are a few extensions that we would like
point out.

~1! Although our examples concentrated on unbias
messages, the process can clearly be easily generalize
biased messages. It may also be generalized to include
symmetric connections and continuous or multilevel m
sage units~instead of binary!.

~2! It is plausible that many sets of parameters have si
lar performance in the thermodynamic limit; however, th
finite size behavior above and below saturation is of gr
interest from a practical point of view. Finding architectur
that are superior in their finite size behavior, as well as fin
ing methods by which to suppress the finite size effec
would clearly be of great practical significance.

The cascading decoding method and the extensions m
tioned above open a wide range of possibilities for a hig
efficient encoding/decoding mechanism of significant pra
cal value.
-
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